JAVA IO


一.概览

Java 的I/O大概可以分成以下几类:

  • 磁盘操作:File
  • 字节操作:InputStreamOutputStream
  • 字符操作:ReaderWriter
  • 对象操作:Serializable
  • 网络操作:Socket
  • 新的输入/输出:NIO

二.磁盘操作

File 类可以用于表示文件和目录的信息,但是它不表示文件的内容。

递归地列出一个目录下所有文件:

public static void listAllFiles(File dir) {
    if (dir == null || !dir.exists()) {
        return;
    }
    if (dir.isFile()) {
        System.out.println(dir.getName());
        return;
    }
    for (File file : dir.listFiles()) {
        listAllFiles(file);
    }
}

从 Java7 开始,可以使用PathsFiles代替File

三.字节操作

实现文件复制

public static void copyFile(String src, String dist) throws IOException {
    FileInputStream in = new FileInputStream(src);
    FileOutputStream out = new FileOutputStream(dist);

    byte[] buffer = new byte[20 * 1024];
    int cnt;

    // read() 最多读取 buffer.length 个字节
    // 返回的是实际读取的个数
    // 返回 -1 的时候表示读到 eof,即文件尾
    while ((cnt = in.read(buffer, 0, buffer.length)) != -1) {
        out.write(buffer, 0, cnt);
    }

    in.close();
    out.close();
}

装饰者模式

Java I/O 使用了装饰者模式来实现。以InputStream为例,

  • InputStream是抽象组件;
  • FileInputStreamInputStream的子类,属于具体组件,提供了字节流的输入操作;
  • FilterInputStream属于抽象装饰者,装饰者用于装饰组件,为组件提供额外的功能。例如BufferedInputStreamFileInputStream提供缓存的功能。

实例化一个具有缓存功能的字节流对象时,只需要在FileInputStream对象上再套一层BufferedInputStream对象即可。

FileInputStream fileInputStream = new FileInputStream(filePath);
BufferedInputStream bufferedInputStream = new BufferedInputStream(fileInputStream);

DataInputStream装饰者提供了对更多数据类型进行输入的操作,比如int.double等基本类型。

四.字符操作

编码与解码

编码就是把字符转换为字节,而解码是把字节重新组合成字符。

如果编码和解码过程使用不同的编码方式那么就出现了乱码。

  • GBK 编码中,中文字符占 2 个字节,英文字符占 1 个字节;
  • UTF-8 编码中,中文字符占 3 个字节,英文字符占 1 个字节;
  • UTF-16be 编码中,中文字符和英文字符都占 2 个字节。

UTF-16be 中的be指的是Big Endian,也就是大端。相应地也有UTF-16lele指的是Little Endian,也就是小端。

Java 的内存编码使用双字节编码UTF-16be,这不是指 Java 只支持这一种编码方式,而是说char这种类型使用UTF-16be进行编码。char类型占 16 位,也就是两个字节,Java 使用这种双字节编码是为了让一个中文或者一个英文都能使用一个char来存储。

String 的编码方式

String可以看成一个字符序列,可以指定一个编码方式将它编码为字节序列,也可以指定一个编码方式将一个字节序列解码为String

String str1 = "中文";
byte[] bytes = str1.getBytes("UTF-8");
String str2 = new String(bytes, "UTF-8");
System.out.println(str2);

在调用无参数getBytes()方法时,默认的编码方式不是UTF-16be。双字节编码的好处是可以使用一个char存储中文和英文,而将String转为bytes[]字节数组就不再需要这个好处,因此也就不再需要双字节编码。getBytes()的默认编码方式与平台有关,一般为UTF-8

byte[] bytes = str1.getBytes();

Reader 与 Writer

不管是磁盘还是网络传输,最小的存储单元都是字节,而不是字符。但是在程序中操作的通常是字符形式的数据,因此需要提供对字符进行操作的方法。

  • InputStreamReader实现从字节流解码成字符流;
  • OutputStreamWriter实现字符流编码成为字节流。

实现逐行输出文本文件的内容

public static void readFileContent(String filePath) throws IOException {
    FileReader fileReader = new FileReader(filePath);
    BufferedReader bufferedReader = new BufferedReader(fileReader);

    String line;
    while ((line = bufferedReader.readLine()) != null) {
        System.out.println(line);
    }

    // 装饰者模式使得 BufferedReader 组合了一个 Reader 对象
    // 在调用 BufferedReader 的 close() 方法时会去调用 Reader 的 close() 方法
    // 因此只要一个 close() 调用即可
    bufferedReader.close();
}

五.对象操作

序列化

序列化就是将一个对象转换成字节序列,方便存储和传输。

  • 序列化:ObjectOutputStream.writeObject()
  • 反序列化:ObjectInputStream.readObject()

不会对静态变量进行序列化,因为序列化只是保存对象的状态,静态变量属于类的状态。

Serializable

序列化的类需要实现Serializable接口,它只是一个标准,没有任何方法需要实现,但是如果不去实现它的话而进行序列化,会抛出异常。

public static void main(String[] args) throws IOException, ClassNotFoundException {
    A a1 = new A(123, "abc");
    String objectFile = "file/a1";

    ObjectOutputStream objectOutputStream = new ObjectOutputStream(new FileOutputStream(objectFile));
    objectOutputStream.writeObject(a1);
    objectOutputStream.close();

    ObjectInputStream objectInputStream = new ObjectInputStream(new FileInputStream(objectFile));
    A a2 = (A) objectInputStream.readObject();
    objectInputStream.close();
    System.out.println(a2);
}

private static class A implements Serializable {
    private int x;
    private String y;

    A(int x, String y) {
        this.x = x;
        this.y = y;
    }

    @Override
    public String toString() {
        return "x = " + x + "  " + "y = " + y;
    }
}

transient

transient关键字可以使一些属性不会被序列化。

ArrayList中存储数据的数组elementData是用transient修饰的,因为这个数组是动态扩展的,并不是所有的空间都被使用,因此就不需要所有的内容都被序列化。通过重写序列化和反序列化方法,使得可以只序列化数组中有内容的那部分数据。

private transient Object[] elementData;

六.网络操作

Java 中的网络支持:

  • InetAddress:用于表示网络上的硬件资源,即IP地址;
  • URL:统一资源定位符;
  • Sockets:使用TCP协议实现网络通信;
  • Datagram:使用UDP协议实现网络通信。

InetAddress

没有公有的构造函数,只能通过静态方法来创建实例。

InetAddress.getByName(String host);
InetAddress.getByAddress(byte[] address);

URL

可以直接从URL中读取字节流数据。

public static void main(String[] args) throws IOException {
    URL url = new URL("http://www.baidu.com");

    /* 字节流 */
    InputStream is = url.openStream();

    /* 字符流 */
    InputStreamReader isr = new InputStreamReader(is, "utf-8");

    /* 提供缓存功能 */
    BufferedReader br = new BufferedReader(isr);

    String line;
    while ((line = br.readLine()) != null) {
        System.out.println(line);
    }

    br.close();
}

Sockets

  • ServerSocket:服务器端类
  • Socket:客户端类
  • 服务器和客户端通过InputStreamOutputStream进行输入输出。

Datagram

  • DatagramSocket:通信类
  • DatagramPacket:数据包类

七.NIO

新的输入/输出 (NIO) 库是在JDK 1.4中引入的,弥补了原来的I/O的不足,提供了高速的.面向块的I/O

流与块

I/ONIO最重要的区别是数据打包和传输的方式,I/O以流的方式处理数据,而NIO以块的方式处理数据。

面向流的I/O一次处理一个字节数据:一个输入流产生一个字节数据,一个输出流消费一个字节数据。为流式数据创建过滤器非常容易,链接几个过滤器,以便每个过滤器只负责复杂处理机制的一部分。不利的一面是,面向流的I/O通常相当慢。

面向块的I/O一次处理一个数据块,按块处理数据比按流处理数据要快得多。但是面向块的I/O缺少一些面向流的I/O所具有的优雅性和简单性。

I/O包和 NIO 已经很好地集成了,java.io.\*已经以NIO为基础重新实现了,所以现在它可以利用NIO的一些特性。例如,java.io.\* 包中的一些类包含以块的形式读写数据的方法,这使得即使在面向流的系统中,处理速度也会更快。

通道与缓冲区

1. 通道

通道Channel是对原I/O包中的流的模拟,可以通过它读取和写入数据。

通道与流的不同之处在于,流只能在一个方向上移动(一个流必须是InputStream或者OutputStream的子类),而通道是双向的,可以用于读.写或者同时用于读写。

通道包括以下类型:

  • FileChannel:从文件中读写数据;
  • DatagramChannel:通过UDP读写网络中数据;
  • SocketChannel:通过TCP读写网络中数据;
  • ServerSocketChannel:可以监听新进来的TCP连接,对每一个新进来的连接都会创建一个SocketChannel

2. 缓冲区

发送给一个通道的所有数据都必须首先放到缓冲区中,同样地,从通道中读取的任何数据都要先读到缓冲区中。也就是说,不会直接对通道进行读写数据,而是要先经过缓冲区。

缓冲区实质上是一个数组,但它不仅仅是一个数组。缓冲区提供了对数据的结构化访问,而且还可以跟踪系统的读/写进程。

缓冲区包括以下类型:

  • ByteBuffer
  • CharBuffer
  • ShortBuffer
  • IntBuffer
  • LongBuffer
  • FloatBuffer
  • DoubleBuffer

缓冲区状态变量

  • capacity:最大容量;
  • position:当前已经读写的字节数;
  • limit:还可以读写的字节数。

状态变量的改变过程举例:

① 新建一个大小为 8 个字节的缓冲区,此时position 为 0,而limit = capacity = 8。capacity 变量不会改变,下面的讨论会忽略它。


② 从输入通道中读取 5 个字节数据写入缓冲区中,此时position为 5,limit保持不变。


③ 在将缓冲区的数据写到输出通道之前,需要先调用flip()方法,这个方法将limit设置为当前position,并将position设置为 0。


④ 从缓冲区中取 4 个字节到输出缓冲中,此时position设为 4。


⑤ 最后需要调用clear()方法来清空缓冲区,此时positionlimit都被设置为最初位置。


文件 NIO 实例

以下展示了使用NIO快速复制文件的实例:

public static void fastCopy(String src, String dist) throws IOException {
    /* 获得源文件的输入字节流 */
    FileInputStream fin = new FileInputStream(src);

    /* 获取输入字节流的文件通道 */
    FileChannel fcin = fin.getChannel();

    /* 获取目标文件的输出字节流 */
    FileOutputStream fout = new FileOutputStream(dist);

    /* 获取输出字节流的文件通道 */
    FileChannel fcout = fout.getChannel();

    /* 为缓冲区分配 1024 个字节 */
    ByteBuffer buffer = ByteBuffer.allocateDirect(1024);

    while (true) {

        /* 从输入通道中读取数据到缓冲区中 */
        int r = fcin.read(buffer);

        /* read() 返回 -1 表示 EOF */
        if (r == -1) {
            break;
        }

        /* 切换读写 */
        buffer.flip();

        /* 把缓冲区的内容写入输出文件中 */
        fcout.write(buffer);

        /* 清空缓冲区 */
        buffer.clear();
    }
}

选择器

NIO 常常被叫做非阻塞IO,主要是因为NIO在网络通信中的非阻塞特性被广泛使用。

NIO 实现了IO多路复用中的Reactor模型,一个线程Thread使用一个选择器Selector通过轮询的方式去监听多个通道Channel上的事件,从而让一个线程就可以处理多个事件。

通过配置监听的通道Channel为非阻塞,那么当Channel上的IO事件还未到达时,就不会进入阻塞状态一直等待,而是继续轮询其它Channel,找到IO事件已经到达的Channel执行。

因为创建和切换线程的开销很大,因此使用一个线程来处理多个事件而不是一个线程处理一个事件,对于IO密集型的应用具有很好地性能。

应该注意的是,只有套接字Channel才能配置为非阻塞,而FileChannel不能,为FileChannel配置非阻塞也没有意义。


1. 创建选择器

Selector selector = Selector.open();

2. 将通道注册到选择器上

ServerSocketChannel ssChannel = ServerSocketChannel.open();
ssChannel.configureBlocking(false);
ssChannel.register(selector, SelectionKey.OP_ACCEPT);

通道必须配置为非阻塞模式,否则使用选择器就没有任何意义了,因为如果通道在某个事件上被阻塞,那么服务器就不能响应其它事件,必须等待这个事件处理完毕才能去处理其它事件,显然这和选择器的作用背道而驰。

在将通道注册到选择器上时,还需要指定要注册的具体事件,主要有以下几类:

  • SelectionKey.OP_CONNECT
  • SelectionKey.OP_ACCEPT
  • SelectionKey.OP_READ
  • SelectionKey.OP_WRITE

它们在SelectionKey的定义如下:

public static final int OP_READ = 1 << 0;
public static final int OP_WRITE = 1 << 2;
public static final int OP_CONNECT = 1 << 3;
public static final int OP_ACCEPT = 1 << 4;

可以看出每个事件可以被当成一个位域,从而组成事件集整数。例如:

int interestSet = SelectionKey.OP_READ | SelectionKey.OP_WRITE;

3. 监听事件

int num = selector.select();

使用select()来监听到达的事件,它会一直阻塞直到有至少一个事件到达。

4. 获取到达的事件

Set<SelectionKey> keys = selector.selectedKeys();
Iterator<SelectionKey> keyIterator = keys.iterator();
while (keyIterator.hasNext()) {
    SelectionKey key = keyIterator.next();
    if (key.isAcceptable()) {
        // ...
    } else if (key.isReadable()) {
        // ...
    }
    keyIterator.remove();
}

5. 事件循环

因为一次select()调用不能处理完所有的事件,并且服务器端有可能需要一直监听事件,因此服务器端处理事件的代码一般会放在一个死循环内。

while (true) {
    int num = selector.select();
    Set<SelectionKey> keys = selector.selectedKeys();
    Iterator<SelectionKey> keyIterator = keys.iterator();
    while (keyIterator.hasNext()) {
        SelectionKey key = keyIterator.next();
        if (key.isAcceptable()) {
            // ...
        } else if (key.isReadable()) {
            // ...
        }
        keyIterator.remove();
    }
}

套接字NIO实例

public class NIOServer {
    public static void main(String[] args) throws IOException {
        Selector selector = Selector.open();

        ServerSocketChannel ssChannel = ServerSocketChannel.open();
        ssChannel.configureBlocking(false);
        ssChannel.register(selector, SelectionKey.OP_ACCEPT);

        ServerSocket serverSocket = ssChannel.socket();
        InetSocketAddress address = new InetSocketAddress("127.0.0.1", 8888);
        serverSocket.bind(address);

        while (true) {

            selector.select();
            Set<SelectionKey> keys = selector.selectedKeys();
            Iterator<SelectionKey> keyIterator = keys.iterator();

            while (keyIterator.hasNext()) {

                SelectionKey key = keyIterator.next();

                if (key.isAcceptable()) {

                    ServerSocketChannel ssChannel1 = (ServerSocketChannel) key.channel();

                    // 服务器会为每个新连接创建一个 SocketChannel
                    SocketChannel sChannel = ssChannel1.accept();
                    sChannel.configureBlocking(false);

                    // 这个新连接主要用于从客户端读取数据
                    sChannel.register(selector, SelectionKey.OP_READ);

                } else if (key.isReadable()) {

                    SocketChannel sChannel = (SocketChannel) key.channel();
                    System.out.println(readDataFromSocketChannel(sChannel));
                    sChannel.close();
                }

                keyIterator.remove();
            }
        }
    }

    private static String readDataFromSocketChannel(SocketChannel sChannel) throws IOException {

        ByteBuffer buffer = ByteBuffer.allocate(1024);
        StringBuilder data = new StringBuilder();

        while (true) {

            buffer.clear();
            int n = sChannel.read(buffer);
            if (n == -1) {
                break;
            }
            buffer.flip();
            int limit = buffer.limit();
            char[] dst = new char[limit];
            for (int i = 0; i < limit; i++) {
                dst[i] = (char) buffer.get(i);
            }
            data.append(dst);
            buffer.clear();
        }
        return data.toString();
    }
}
public class NIOClient {

    public static void main(String[] args) throws IOException {
        Socket socket = new Socket("127.0.0.1", 8888);
        OutputStream out = socket.getOutputStream();
        String s = "hello world";
        out.write(s.getBytes());
        out.close();
    }
}

内存映射文件

内存映射文件I/O是一种读和写文件数据的方法,它可以比常规的基于流或者基于通道的I/O快得多。

向内存映射文件写入可能是危险的,只是改变数组的单个元素这样的简单操作,就可能会直接修改磁盘上的文件。修改数据与将数据保存到磁盘是没有分开的。

下面代码行将文件的前1024个字节映射到内存中,map()方法返回一个MappedByteBuffer,它是ByteBuffer的子类。因此,可以像使用其他任何ByteBuffer一样使用新映射的缓冲区,操作系统会在需要时负责执行映射。

MappedByteBuffer mbb = fc.map(FileChannel.MapMode.READ_WRITE, 0, 1024);

对比

NIO与普通I/O的区别主要有以下两点:

  • NIO是非阻塞的;
  • NIO面向块,I/O面向流。

八.参考资料


文章作者: darebeat
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 darebeat !
 上一篇
JAVA并发 JAVA并发
Java是一种多线程编程语言,我们可以使用Java来开发多线程程序。 多线程程序包含两个或多个可同时运行的部分,每个部分可以同时处理不同的任务,从而能更好地利用可用资源,特别是当您的计算机有多个CPU时。多线程使您能够写入多个活动,可以在同一程序中同时进行操作处理。
2020-11-02
下一篇 
JAVA容器 JAVA容器
容器主要包括 Collection 和 Map 两种,Collection 存储着对象的集合,而 Map 存储着键值对(两个对象)的映射表。
2020-10-30
  目录